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Abstract— Cray’s Shasta supercomputers support more varied 
hardware than any previous Cray system. This includes a 
significantly wider variety of processors, coprocessors, and 
accelerators than has previously been available on Cray 
systems. Further, Cray is supporting the use of certain 
commodity hardware in Shasta systems. The more complicated 
hardware ecosystem in Shasta makes hardware management 
more complicated than previous Cray systems. 

However, Cray is building solutions to minimize this complexity, 
with a goal of making hardware management easier under 
Shasta than previous Cray systems. This paper will cover 
Hardware State Manager (HSM), River Endpoint Discovery 
Service (REDS), Mountain Endpoint Discovery Service 
(MEDS), and Ideal Design of Equipment, Architecture, and 
Layout Service (IDEALS). These four services cooperate to 
geolocate, initialize, discover and track the hardware within a 
Shasta system. This paper begins with an introduction to these 
services and their responsibilities, continue by discussing the 
workflows used to manage hardware with these services, and 
conclude with a comparison to XC systems. 
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I.  INTRODUCTION 
Cray’s next-generation Shasta systems are designed to 

break the exascale barrier and to be more flexible than any 
previous Cray system.  A portion of this flexibility is a 
significant expansion of hardware options.  By expanding the 
number of available hardware options, Cray will allow 
customers to pick hardware that more closely matches their 
needs than was previously possible. 

One of the major changes Cray is making is the 
availability of two major categories of hardware packaging: 
Mountain and River. 

Mountain hardware is highly specialized, engineered by 
Cray to provide as much computing power in as little space as 
possible.  Mountain hardware is highly integrated and Cray 
controls all elements of the hardware.  Mountain hardware 
offers the highly-integrated and well-supported 
supercomputer experience Cray is famous for. 

In contrast, River hardware is commodity hardware that is 
not altered by Cray.  River hardware is intended to allow 
access to a wider variety of hardware options than Mountain, 
including specialty hardware (such as certain accelerators).  

However, since Cray does not customize this hardware, it 
requires more effort to maintain and has fewer features. 

This paper examines four major tasks performed on these 
types of hardware: endpoint discovery, initialization, 
geolocation, and inventory discovery of hardware in Cray 
Shasta systems. Endpoint discovery locates hardware on the 
hardware management network. Initialization is the process of 
loading basic configuration onto compute nodes. Geolocation 
assigns an identity to the node based on its physical location. 
Finally, inventory discovery identifies all the hardware in 
managed devices, including network addresses, component 
serial numbers, and more.  This completes discovery and 
enables the use of the high speed network, if any.  Together, 
these tasks are the discovery story. 

Cray’s Shasta supercomputers use microservices to ensure 
the individual components of the system are highly available 
and independently replaceable.  The discovery story uses four 
microservices: IDEALS (Ideal Design of Equipment, 
Architecture, and Layout Service), REDS (River Endpoint 
Discovery Service), MEDS (Mountain Endpoint Discovery 
Service), and HSM (Hardware State Manager).  All the 
services primarily interact with the out-of-band hardware 
management interface – e.g.: Baseboard Management 
Controller (BMC) on River nodes or node controller (nC) on 
Mountain nodes. 

Portions of the technologies being discussed in this paper 
are in the process of implementation and are subject to change. 

II. TECHNICAL SPECIFICATIONS 
Several technical specifications are used by the services.  

This section discusses each of these specifications in sufficient 
detail for this paper.  Interested readers may examine each 
specification in more depth, if desired. 

A. Redfish 
The most prominent of these technical specifications is 

Redfish.  Redfish is a vendor-agnostic interface for interacting 
with hardware out of band  [1], published by the DMTF 
(formerly the Distributed Management Task Force).  It 
presents a standardized interface to any supported hardware.  
This interface is a RESTful HTTP interface, meaning that it 
can be interacted with using standard HTTP tools.  Further, 
the standard is extensible, meaning that it can cover a myriad 
of different hardware configurations and be customized by 
vendors. 



In Shasta systems, Redfish is used to communicate with 
the out-of-band management controllers in all devices which 
support it. 

B. SNMP 
SNMP (Simple Network Management Protocol) is a 

generic transport that allows communication with hardware 
management interfaces on a network  [2].  Cray uses SNMPv3 
for security reasons.  SNMP is a popular standard in network 
switches and has been extensively standardized.  SNMP is 
deployed on many types of hardware that do not yet have 
Redfish support, and is most frequently used to interact with 
hardware which does not yet have Redfish management 
interfaces. 

C. IPMI 
IPMI (Intelligent Platform Management Interface) is an 

out of band hardware management scheme used by server-
grade hardware [3].  Typically IPMI is implemented on the 
BMC.  IPMI allows users to control the power state of a 
server, connect to a serial console remotely, interrogate some 
properties and sensors in systems, or even inject raw 
commands onto a serial bus.  In Shasta, most IPMI functions 
are replaced by Redfish and IPMI is only used to perform 
configuration of the Redfish interface. 

D. SSDP 
SSDP (Simple Service Discovery Protocol) is a multicast, 

HTTP-like protocol for services to announce their presence on 
a network [4].  SSDP is used by Cray’s Mountain hardware to 
announce when it is available on the hardware management 
network and is the backbone of Mountain hardware discovery. 

III. TASKS 
The discovery story consists of a number of separate tasks: 

endpoint discovery, initialization, geolocation, and inventory 
discovery.  We will discuss each of these, with a specific focus 
on the responsibilities required of the implementation of each 
task. 

A. Endpoint Discovery 
The endpoint discovery task consists of determining when 

a new endpoint is present on the hardware management 
network and configuring it.  For example, when a compute 
node first boots, this task requires determining that a new out-
of-band system management interface is available on the 
network.  An implementation of endpoint discovery will 
communicate with network infrastructure (e.g.: switches) to 
determine when the network topology changes and how.  It 
will further communicate with the infrastructure to determine 
how new elements of the network topology may be 
communicated with. 

B. Initialization 
Initialization is the process of configuring hardware in the 

system to work correctly with the rest of the system.  This 
means configuring the IP address, credentials/authentication, 
and other information on the out-of-band system management 
interface (e.g.: the BMC). 

C. Geolocation 
Cray’s Shasta systems assign every node an ID based on 

their physical location in a system.  In Shasta, this is known as 
an xname and encodes both physical location as well as 
hardware type and responsibility.  They bear significant 
similarities to cnames [5] in previous Cray systems.  This 
makes the use of a system significantly easier in a number of 
ways.  For example, if a node fails, it makes it very easy to 
locate and replace it.  The xname thus provides a constant 
identifier for a system location, regardless of the physical 
component that resides there.  It can also be used to indicate a 
location is valid but currently unpopulated. 

D. Inventory Discovery 
Finally, the Inventory Discovery process uses the Redfish 

interface to determine what hardware is available in each 
compute node as well as its initial state.  This information is 
used to enable the use of the system on the high-speed and 
node management networks, for administrative tasks, such as 
collecting processor and memory properties for job 
scheduling, and system maintenance tasks, such as recording 
the serial and part numbers of Field Replaceable Units (FRUs)  
This level of discovery detail allows tracking of hardware as 
it moves through the system and allows administrators to 
examine snapshots of the historical state of the system.  While 
endpoint discovery, initialization, and geolocation all 
generally take place only when hardware is first introduced to 
a system, inventory discovery re-occurs periodically to ensure 
hardware changes are detected and recorded. 

IV. SERVICES 
There are four major services involved in hardware 

discovery and maintenance.  This section will discuss each in 
depth. 

These services are designed to work well in large system 
builds.  Cray’s large systems are often too large to be built and 
tested entirely in Cray’s factory space and are never 
completely assembled until they arrive at the customer 
facility.  Further, in larger systems, it is a statistical certainty 
that hardware will fail.  Often it’s a statistical certainty that 
hardware will fail during each system boot.  From this, we 
extracted several primary design requirements: 

1. The compute nodes must be discoverable and 
bootable even if all hardware is not present 

2. It must be possible to add or remove compute nodes 
without affecting other compute nodes 

3. Discovery should be an ongoing process so that a 
minimum of commands are required to replace failed 
hardware.  Ideally failed hardware can be replaced without 
interacting with the management software at any point. 

Figure 1 shows the information flow between the various 
services.  This figure includes all services discussed, plus the 
Boot Script Service (BSS) and Artifact Repository Service 
(ARS).  BSS manages which image is booted on a node, while 



ARS stores the images and transfers them to the nodes on 
boot.  

 

 
Figure 1: Information flow between hardware microservices 

A. HSM 
Hardware State Manager (HSM) is the “hub” of the 

hardware management story.  HSM serves a number of 
functions, but primarily serves as both the main collection 
point for hardware state and inventory data, as well as the 
main distribution point of that data to the rest of the system 
and users.  HSM responds to queries as well as transmitting 
events when important changes occur. 

As its name implies, HSM is responsible for tracking the 
state of system hardware necessary for the management of the 
system – if it is currently on, off, behaving abnormally, 
missing from the system, or otherwise inaccessible.  In 
addition, HSM assembles a detailed inventory of system 
hardware – nodes, memory modules, network cards and other 
field replaceable units.  HSM also tracks the historical location 
of these physical components, enabling administrators to view 
the historical composition of the system at any point in time 
and retain detailed information about every component both 
past and present. 

Hardware state manager also  functions as the source of 
truth on system hardware during interactions with the rest of 
Cray’s software ecosystem and bootstraps many important 
system services.  For example, hardware cannot be booted 
until it the information required to do so is available to the 
boot service via HSM.   Another example is HSM providing 
detailed node inventory information to support job 
scheduling. 

To assemble this inventory, HSM performs inventory 
discovery on system hardware by interrogating BMCs, nCs,  
and other embedded management controllers whenever  
endpoint discovery finds one.   It also continues to monitor 
and update the state of these components, and repeats the 
inventory process periodically in response to system events, 
such as when a piece of hardware may have been swapped 
with another.   As an example, the inventory discovery process 
for Redfish endpoints involves HSM learning about a 
controller and then walking the entirety of the Redfish tree, 
extracting information about whatever hardware that 
controller manages.   This includes detailed processor, 
memory and network interface properties, important 
identifying information such as MAC addresses, serial and 

part numbers, as well as a variety of other data.  Upon 
completion, the collected state and inventory information is 
available to the rest of the system via HSM. 

B. IDEALS 
IDEALS (Ideal Design of Equipment, Architecture and 

Layout Service) defines how the system as a whole is intended 
to be constituted.   Shasta systems have a huge number of 
possible layouts and configurations.  For flexibility, Cray does 
not impose a system model (e.g.: a 2-dimensional grid) on 
Shasta systems.  IDEALS represents the system based on 
existing sources like manufacturing specifications.   The data 
provided by IDEALS provides the scaffolding that allows 
endpoint and inventory discovery to work. 

IDEALS details the physical locations of network 
hardware, compute nodes and cabinets.  Further, it stores 
information about the network, such as which port on which 
switch should be connected to each compute node.  IDEALS 
does not store the details of the actual hardware (e.g.: 
hardware identifiers).  IDEALS thus does not need to change 
as hardware within the system is replaced, only as the system 
constitution changes. 

IDEALS presents a simple to use HTTP API for querying 
the stored information.  Cray does not anticipate customers 
needing to interact with IDEALS frequently or in a significant 
manner, unless making changes to system hardware that were 
not planned for at system creation.  However, interaction with 
IDEALS is required if the system setup changes – for 
example, if system cabling is altered or if the system is 
expanded or reduced. 

C. REDS 
The River Endpoint Discovery Service (REDS) manages 

Endpoint Discovery, Initialization, and Geolocation of River 
hardware.  Because it interacts with commodity off-the-shelf 
(COTS) hardware, it is relatively more complex than the other 
services.  REDS only interacts with the rest of the system 
when an “unknown” compute node attempts to boot on the 
network.  A compute node is unknown if it is not already listed 
in hardware state manager. 

Customers should have to interact with REDS only to 
correct error conditions. 

REDS consists of two major components: a daemon 
hosted in the management plane and a discovery image that is 
booted on compute nodes.  These two cooperate to gather core 
information about compute nodes and network addresses.  
This core information is then used to identify the node and 
send information about its BMC to HSM (which then 
performs detailed hardware discovery). 

First, the discovery image.  The image is a standard PXE 
boot image.  When a node attempts to PXE boot and is not 
known to HSM, it is told to boot the discovery image.  This 
image contacts the REDS daemon to get configuration 
information (such as authentication credentials for the BMC) 
and configures the BMC.  It then gathers information about 
the BMC (such as the IP address assigned to the BMC and the 
MAC address of the BMC interfaces) and sends this to the 
daemon. 



The daemon acts as a coordinator, taking in information 
from multiple sources and using it to perform identification of 
the nodes.   Broadly speaking, the daemon associates an IP 
address to an xname (and thus a location) by associating the 
IP address to a MAC address in the discovery image.  It then 
determines which switch and switch port that MAC address is 
connected to.  Finally, it queries the switch and switch port in 
IDEALS to determine what xname is connect to that port.   

For a visual representation of this process, see Figure 2.  
Figure 2 shows the process of performing endpoint discovery 
on a single node.  It begins as the node is first powered on.  
The left-hand side is operations performed on the compute 
node while the right is operations performed in the 
management plane.  Note that interaction between REDS and 
the switches happens asynchronously from interaction 
between REDS and the compute node. 

The daemon has two major components: an HTTP module 
to handle interactions with compute nodes and an SNMP 
module to handle interaction with network switches.   

The HTTP module exists to handle information flow to 
and from the discovery image booted on the compute nodes. 

The SNMP module gathers information on which MAC 
address is plugged into which port on each switch.  This 
information is combined with the MAC address discovered in 
the discovery image to allow a bridge between the network 
layout and the physical layout of the system.  The SNMP 
module also determines when a node is no longer available on 
the network by when it disappears from the switch it is 
connected to. 

The core of the daemon combines the information from 
the HTTP and SNMP modules.  Once the daemon has an IP 
address, MAC address, username and password for a BMC, it 
notifies HSM that a new endpoint exists.  In the case of a 
disappearing node, it determines which xname matches the 

MAC address that has disappeared, the notifies HSM that the 
node is no longer present. 

D. MEDS 
The Mountain Endpoint Discovery Service (MEDS) is an 

extremely simple service.  Shasta Mountain hardware assigns 
itself a hostname, MAC and IP address based on its location, 
which it is able to determine by reading from an embedded 
cabinet controller.  It also registers via SSDP upon power-on.  

Figure 2: REDS network communications 

Figure 3: Network operations of MEDS.   



MEDS receives the SSDP registrations, which include all the 
information required by HSM to manage the node.  In short, 
MEDS is simply a translation layer between the Mountain 
Hardware’s SSDP broadcasts and HSM’s API.  Customers 
should interact with MEDS only to correct error conditions. 

MEDS has a second functionality: determining when 
hardware has left the network.  Hardware may leave the 
network gracefully (gives notice it is going to disappear) or 
un-gracefully (without notice).  SSDP specifies that services 
should periodically broadcast while still available and should 
broadcast when shutting down.  In the graceful case, MEDS 
simply translates the shutting down notifications for the 
hardware into notifications to HSM.  In the un-graceful case, 
MEDS notes that it is no longer receiving heartbeat broadcasts 
for the hardware and notifies HSM that it has been removed. 

The network operations of MEDS are shown in Figure 3.  
This diagram shows communication between the Mountain 
Node Controller (an out-of-band management interface), 
MEDS, and HSM.  The node controller sends SSDP 
notifications periodically, as well as when the device will be 
removed from the network.  This diagram does not display 
MEDS detecting that a node has left the network un-gracefully 
(i.e.: without sending a notification) 

V. WORKFLOWS 
Next, we will discuss the most common workflows 

administrators are expected to encounter while working with 
Cray’s Shasta systems.  We’ll start with the smallest cases 
(changing single nodes) and work up to the more complex 
scenarios (system first boot). 

A. Adding a node 
In the adding a node case, we assume that the system is 

being expanded.  This section will walk through a single node 
being added to the system for the first time.  It assumes the 
hardware is new, but that the node is already in the system 
map managed by IDEALS. 

1) Mountain 
Mountain hardware self-configures on startup.  It needs 

merely be plugged in to self-configure and join the system. 
2) River 

River hardware discovery is more complex than that of 
Mountain.  It requires nodes to boot and run an image, rather 
than taking advantage of Cray-built and -controlled embedded 
controllers.  It also has fewer available mechanisms to give 
feedback to the management software in the event of a failure 
during endpoint discovery. 

For this reason, River hardware behaves in a very specific 
manner on first boot to give clear indicators to administrators 
on failure.  If a River node successfully discovers after being 
powered on, it will power itself off.  This gives a clear 
indicator of success.  If, however, the node fails for any 
reason, it will remain powered on with the logs visible on the 
console to assist administrators in debugging the cause of the 
failure. 

Thus, the workflow for adding a node to the system is: 
1. Plug the node in to the appropriate connections 
2. Power on 
3. Verify the node powers itself off within 5 minutes 

B. Removing a node 
Both Mountain and River hardware should automatically 

detect when a node has been physically removed.  To 
gracefully remove a node, administrators should first verify it 
has been drained in the workload manager and has been 
powered off.  Unlike previous Cray systems, removing a node 
will not affect the system’s networks. 

C. Replacing a node 
Replacing a node is a combination of the “removing a 

node” and “adding a node” cases. 

D. Initial Discovery 
This workflow focuses on the first power-on of the 

compute nodes.  All of the compute hardware will need to run 
discovery when first powered on.  Thus, for a new system, the 
first step in booting the system is simply to power it on.  As 
none of the hardware has yet been discovered, it cannot yet be 
controlled by Shasta software.  Much of the hardware will 
automatically power on when power is supplied; the hardware 
which does not (primarily River hardware) may be manually 
powered on in any order.  Powering on River nodes may be 
delayed or may be done in parallel with other installation 
tasks. 

After powering on, hardware will automatically be 
discovered.  Any node that fails discovery should be noted as 
needing investigation to determine the cause of failure, but 
will not block the system boot process. 

E. Expanding/Contracting a system  
Expanding or contracting a system is a rare but important 

scenario.  It is not uncommon for a system to be permanently 
altered in ways not accounted for when the system was 
designed.  For example, a system could be expanded (new 
racks of hardware added) or contracted (racks of hardware 
removed). 

In any case, the core of the process is an interaction with 
IDEALS.  IDEALS manages the hardware that is expected to 
be present in the system.  It therefore must be made aware of 
the changes.  Cray will provide multiple ways of interacting 
with IDEALS, including a user-friendly utility and access to 
the RESTful API. 

To alter a system, all changes to the system – including 
additional, moved, or removed switches and additional, 
moved, or removed cables – must be recorded with IDEALS.  
To add nodes to a system, they should first be added to 
IDEALS.  Then the nodes should be installed and powered on, 
as in the “adding a node” workflow. 

To remove nodes from a system, start by using the 
removing a node workflow.  The hardware may then be 
removed from the system and IDEALS updated. 

VI. COMPARISON TO XC 
As Shasta is intended to replace Cray’s XC systems, it is 

important to compare both systems.  In the realm of discovery 
and hardware maintenance, the differences are quite 
significant – but for the better.  Discovery and hardware 
maintenance should be significantly more simple in Shasta 
than they were in XC systems. 



A. Initial Discovery 
XC systems did not have a pre-generated map of the 

system.  Instead, when first booted they would discover the 
hardware that was available.  This was done with a tool called 
xtdiscover [6].  xtdiscover collected all system information in 
a single session, essentially regenerating the system database.  
Furthermore, collecting this information required all system 
components, even existing ones, to be successfully power 
cycled – a time consuming process that was often further 
lengthened if any blades required repeated attempts.  It 
performed discovery in a “single shot” and required manual 
reconciliation if there were changes between runs.  Further, 
each run required about two hours.  While xtdiscover worked 
well for smaller systems where it is possible for all hardware 
to be present and functional at once, it is extremely 
problematic in Cray’s larger systems. 

Larger XC systems are often built up over a period of 
weeks as the hardware arrives at the final install location.  
Further, during this time, the customer wants to be using (or 
at least testing) the portions of the system that are available.  
Dedicating two or more hours to running xtdiscover 
significantly interferes with customer use and testing of the 
system. 

In contrast, hardware discovery on Shasta is designed with 
ease-of-use as a priority.  IDEALS holds a pre-generated 
mapping of the entire system.  This means there is no single 
step where the entirety of the system must be present and 
hardware may be added to the system as it is available. 

Further, REDS and MEDS (which perform the endpoint 
discovery to determine the hardware is added to the system) 
are ongoing processes.  Both examine hardware as they 
receive indicators it is present and add it if it matches hardware 
listed in IDEALS.  Neither needs manual triggering, so as 
soon as new hardware is in the system and powered on, REDS 
or MEDS will attempt to discover it.  In the case of removal, 
both will use secondary information (e.g.: reading slot state in 
Mountain) to ensure they are not removing components due 
to mere malfunction.  This ensures that in the case of hardware 
malfunction, components may be reintroduced to the system 
with a minimum of effort. 

Finally, while REDS and MEDS operate with minimal 
intervention, the level of intervention required is configurable.  
They may be configured to require human intervention before 
making any changes, if the administrator desires. 

B. Hardware Replacement 
Hardware replacement in XC required rerunning a warm-

swap command to locate new hardware once a failed blade 
was replaced.  Because Shasta moves to the continuous 
discovery model, this manual effort is no longer required.  
Replacement hardware need merely be installed (and in the 
case of River hardware, powered on) in the system to be 
discovered and integrated.  At that point, it will assume the 
identity of the hardware it was replacing, including the OS 
image. 

VII. CONCLUSION 
Cray’s Shasta system should significantly reduce the effort 

required of systems administrators in performing hardware 
discovery and maintenance.  Shasta prioritizes ease of use and 
independence of each component from the others.  Further, it 
has, as much as possible, ensured hardware tasks (such as 
replacing a failed component) do not require software 
intervention on the system. 

Hardware discovery and maintenance involves four 
independent services: IDEALS (which manages a “map” of 
the system as it was designed), HSM (which maintains 
information about the current and past state of the system), 
MEDS (which locates and configures Mountain hardware), 
and REDS (which locates and configures River hardware).  Of 
these services, users should only have reason to interact with 
HSM and IDEALS. 

This paper summarized the anticipated workflows to be 
used with this software, with a focus on how these workflows 
are simpler than in XC systems and significantly reduce the 
effort required of administrators. 
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