
Hardware Discovery and Maintenance Workflows in Shasta Systems

Steven Presser
Hardware Management Services

Cray Inc.
Minneapolis, MN, USA

spresser@cray.com

Brent Shields
Hardware Management Services

Cray Inc.
Minneapolis, MN, USA

bshields@cray.com

Abstract— Cray’s Shasta supercomputers support more varied
hardware than any previous Cray system. This includes a
significantly wider variety of processors, coprocessors, and
accelerators than has previously been available on Cray
systems. Further, Cray is supporting the use of certain
commodity hardware in Shasta systems. The more complicated
hardware ecosystem in Shasta makes hardware management
more complicated than previous Cray systems.

However, Cray is building solutions to minimize this complexity,
with a goal of making hardware management easier under
Shasta than previous Cray systems. This paper will cover
Hardware State Manager (HSM), River Endpoint Discovery
Service (REDS), Mountain Endpoint Discovery Service
(MEDS), and Ideal Design of Equipment, Architecture, and
Layout Service (IDEALS). These four services cooperate to
geolocate, initialize, discover and track the hardware within a
Shasta system. This paper begins with an introduction to these
services and their responsibilities, continue by discussing the
workflows used to manage hardware with these services, and
conclude with a comparison to XC systems.

Keywords: Computer interfaces, Computer network
management, Supercomputers, High performance computing

I. INTRODUCTION
Cray’s next-generation Shasta systems are designed to

break the exascale barrier and to be more flexible than any
previous Cray system. A portion of this flexibility is a
significant expansion of hardware options. By expanding the
number of available hardware options, Cray will allow
customers to pick hardware that more closely matches their
needs than was previously possible.

One of the major changes Cray is making is the
availability of two major categories of hardware packaging:
Mountain and River.

Mountain hardware is highly specialized, engineered by
Cray to provide as much computing power in as little space as
possible. Mountain hardware is highly integrated and Cray
controls all elements of the hardware. Mountain hardware
offers the highly-integrated and well-supported
supercomputer experience Cray is famous for.

In contrast, River hardware is commodity hardware that is
not altered by Cray. River hardware is intended to allow
access to a wider variety of hardware options than Mountain,
including specialty hardware (such as certain accelerators).

However, since Cray does not customize this hardware, it
requires more effort to maintain and has fewer features.

This paper examines four major tasks performed on these
types of hardware: endpoint discovery, initialization,
geolocation, and inventory discovery of hardware in Cray
Shasta systems. Endpoint discovery locates hardware on the
hardware management network. Initialization is the process of
loading basic configuration onto compute nodes. Geolocation
assigns an identity to the node based on its physical location.
Finally, inventory discovery identifies all the hardware in
managed devices, including network addresses, component
serial numbers, and more. This completes discovery and
enables the use of the high speed network, if any. Together,
these tasks are the discovery story.

Cray’s Shasta supercomputers use microservices to ensure
the individual components of the system are highly available
and independently replaceable. The discovery story uses four
microservices: IDEALS (Ideal Design of Equipment,
Architecture, and Layout Service), REDS (River Endpoint
Discovery Service), MEDS (Mountain Endpoint Discovery
Service), and HSM (Hardware State Manager). All the
services primarily interact with the out-of-band hardware
management interface – e.g.: Baseboard Management
Controller (BMC) on River nodes or node controller (nC) on
Mountain nodes.

Portions of the technologies being discussed in this paper
are in the process of implementation and are subject to change.

II. TECHNICAL SPECIFICATIONS
Several technical specifications are used by the services.

This section discusses each of these specifications in sufficient
detail for this paper. Interested readers may examine each
specification in more depth, if desired.

A. Redfish
The most prominent of these technical specifications is

Redfish. Redfish is a vendor-agnostic interface for interacting
with hardware out of band [1], published by the DMTF
(formerly the Distributed Management Task Force). It
presents a standardized interface to any supported hardware.
This interface is a RESTful HTTP interface, meaning that it
can be interacted with using standard HTTP tools. Further,
the standard is extensible, meaning that it can cover a myriad
of different hardware configurations and be customized by
vendors.

In Shasta systems, Redfish is used to communicate with
the out-of-band management controllers in all devices which
support it.

B. SNMP
SNMP (Simple Network Management Protocol) is a

generic transport that allows communication with hardware
management interfaces on a network [2]. Cray uses SNMPv3
for security reasons. SNMP is a popular standard in network
switches and has been extensively standardized. SNMP is
deployed on many types of hardware that do not yet have
Redfish support, and is most frequently used to interact with
hardware which does not yet have Redfish management
interfaces.

C. IPMI
IPMI (Intelligent Platform Management Interface) is an

out of band hardware management scheme used by server-
grade hardware [3]. Typically IPMI is implemented on the
BMC. IPMI allows users to control the power state of a
server, connect to a serial console remotely, interrogate some
properties and sensors in systems, or even inject raw
commands onto a serial bus. In Shasta, most IPMI functions
are replaced by Redfish and IPMI is only used to perform
configuration of the Redfish interface.

D. SSDP
SSDP (Simple Service Discovery Protocol) is a multicast,

HTTP-like protocol for services to announce their presence on
a network [4]. SSDP is used by Cray’s Mountain hardware to
announce when it is available on the hardware management
network and is the backbone of Mountain hardware discovery.

III. TASKS
The discovery story consists of a number of separate tasks:

endpoint discovery, initialization, geolocation, and inventory
discovery. We will discuss each of these, with a specific focus
on the responsibilities required of the implementation of each
task.

A. Endpoint Discovery
The endpoint discovery task consists of determining when

a new endpoint is present on the hardware management
network and configuring it. For example, when a compute
node first boots, this task requires determining that a new out-
of-band system management interface is available on the
network. An implementation of endpoint discovery will
communicate with network infrastructure (e.g.: switches) to
determine when the network topology changes and how. It
will further communicate with the infrastructure to determine
how new elements of the network topology may be
communicated with.

B. Initialization
Initialization is the process of configuring hardware in the

system to work correctly with the rest of the system. This
means configuring the IP address, credentials/authentication,
and other information on the out-of-band system management
interface (e.g.: the BMC).

C. Geolocation
Cray’s Shasta systems assign every node an ID based on

their physical location in a system. In Shasta, this is known as
an xname and encodes both physical location as well as
hardware type and responsibility. They bear significant
similarities to cnames [5] in previous Cray systems. This
makes the use of a system significantly easier in a number of
ways. For example, if a node fails, it makes it very easy to
locate and replace it. The xname thus provides a constant
identifier for a system location, regardless of the physical
component that resides there. It can also be used to indicate a
location is valid but currently unpopulated.

D. Inventory Discovery
Finally, the Inventory Discovery process uses the Redfish

interface to determine what hardware is available in each
compute node as well as its initial state. This information is
used to enable the use of the system on the high-speed and
node management networks, for administrative tasks, such as
collecting processor and memory properties for job
scheduling, and system maintenance tasks, such as recording
the serial and part numbers of Field Replaceable Units (FRUs)
This level of discovery detail allows tracking of hardware as
it moves through the system and allows administrators to
examine snapshots of the historical state of the system. While
endpoint discovery, initialization, and geolocation all
generally take place only when hardware is first introduced to
a system, inventory discovery re-occurs periodically to ensure
hardware changes are detected and recorded.

IV. SERVICES
There are four major services involved in hardware

discovery and maintenance. This section will discuss each in
depth.

These services are designed to work well in large system
builds. Cray’s large systems are often too large to be built and
tested entirely in Cray’s factory space and are never
completely assembled until they arrive at the customer
facility. Further, in larger systems, it is a statistical certainty
that hardware will fail. Often it’s a statistical certainty that
hardware will fail during each system boot. From this, we
extracted several primary design requirements:

1. The compute nodes must be discoverable and
bootable even if all hardware is not present

2. It must be possible to add or remove compute nodes
without affecting other compute nodes

3. Discovery should be an ongoing process so that a
minimum of commands are required to replace failed
hardware. Ideally failed hardware can be replaced without
interacting with the management software at any point.

Figure 1 shows the information flow between the various
services. This figure includes all services discussed, plus the
Boot Script Service (BSS) and Artifact Repository Service
(ARS). BSS manages which image is booted on a node, while

ARS stores the images and transfers them to the nodes on
boot.

Figure 1: Information flow between hardware microservices

A. HSM
Hardware State Manager (HSM) is the “hub” of the

hardware management story. HSM serves a number of
functions, but primarily serves as both the main collection
point for hardware state and inventory data, as well as the
main distribution point of that data to the rest of the system
and users. HSM responds to queries as well as transmitting
events when important changes occur.

As its name implies, HSM is responsible for tracking the
state of system hardware necessary for the management of the
system – if it is currently on, off, behaving abnormally,
missing from the system, or otherwise inaccessible. In
addition, HSM assembles a detailed inventory of system
hardware – nodes, memory modules, network cards and other
field replaceable units. HSM also tracks the historical location
of these physical components, enabling administrators to view
the historical composition of the system at any point in time
and retain detailed information about every component both
past and present.

Hardware state manager also functions as the source of
truth on system hardware during interactions with the rest of
Cray’s software ecosystem and bootstraps many important
system services. For example, hardware cannot be booted
until it the information required to do so is available to the
boot service via HSM. Another example is HSM providing
detailed node inventory information to support job
scheduling.

To assemble this inventory, HSM performs inventory
discovery on system hardware by interrogating BMCs, nCs,
and other embedded management controllers whenever
endpoint discovery finds one. It also continues to monitor
and update the state of these components, and repeats the
inventory process periodically in response to system events,
such as when a piece of hardware may have been swapped
with another. As an example, the inventory discovery process
for Redfish endpoints involves HSM learning about a
controller and then walking the entirety of the Redfish tree,
extracting information about whatever hardware that
controller manages. This includes detailed processor,
memory and network interface properties, important
identifying information such as MAC addresses, serial and

part numbers, as well as a variety of other data. Upon
completion, the collected state and inventory information is
available to the rest of the system via HSM.

B. IDEALS
IDEALS (Ideal Design of Equipment, Architecture and

Layout Service) defines how the system as a whole is intended
to be constituted. Shasta systems have a huge number of
possible layouts and configurations. For flexibility, Cray does
not impose a system model (e.g.: a 2-dimensional grid) on
Shasta systems. IDEALS represents the system based on
existing sources like manufacturing specifications. The data
provided by IDEALS provides the scaffolding that allows
endpoint and inventory discovery to work.

IDEALS details the physical locations of network
hardware, compute nodes and cabinets. Further, it stores
information about the network, such as which port on which
switch should be connected to each compute node. IDEALS
does not store the details of the actual hardware (e.g.:
hardware identifiers). IDEALS thus does not need to change
as hardware within the system is replaced, only as the system
constitution changes.

IDEALS presents a simple to use HTTP API for querying
the stored information. Cray does not anticipate customers
needing to interact with IDEALS frequently or in a significant
manner, unless making changes to system hardware that were
not planned for at system creation. However, interaction with
IDEALS is required if the system setup changes – for
example, if system cabling is altered or if the system is
expanded or reduced.

C. REDS
The River Endpoint Discovery Service (REDS) manages

Endpoint Discovery, Initialization, and Geolocation of River
hardware. Because it interacts with commodity off-the-shelf
(COTS) hardware, it is relatively more complex than the other
services. REDS only interacts with the rest of the system
when an “unknown” compute node attempts to boot on the
network. A compute node is unknown if it is not already listed
in hardware state manager.

Customers should have to interact with REDS only to
correct error conditions.

REDS consists of two major components: a daemon
hosted in the management plane and a discovery image that is
booted on compute nodes. These two cooperate to gather core
information about compute nodes and network addresses.
This core information is then used to identify the node and
send information about its BMC to HSM (which then
performs detailed hardware discovery).

First, the discovery image. The image is a standard PXE
boot image. When a node attempts to PXE boot and is not
known to HSM, it is told to boot the discovery image. This
image contacts the REDS daemon to get configuration
information (such as authentication credentials for the BMC)
and configures the BMC. It then gathers information about
the BMC (such as the IP address assigned to the BMC and the
MAC address of the BMC interfaces) and sends this to the
daemon.

The daemon acts as a coordinator, taking in information
from multiple sources and using it to perform identification of
the nodes. Broadly speaking, the daemon associates an IP
address to an xname (and thus a location) by associating the
IP address to a MAC address in the discovery image. It then
determines which switch and switch port that MAC address is
connected to. Finally, it queries the switch and switch port in
IDEALS to determine what xname is connect to that port.

For a visual representation of this process, see Figure 2.
Figure 2 shows the process of performing endpoint discovery
on a single node. It begins as the node is first powered on.
The left-hand side is operations performed on the compute
node while the right is operations performed in the
management plane. Note that interaction between REDS and
the switches happens asynchronously from interaction
between REDS and the compute node.

The daemon has two major components: an HTTP module
to handle interactions with compute nodes and an SNMP
module to handle interaction with network switches.

The HTTP module exists to handle information flow to
and from the discovery image booted on the compute nodes.

The SNMP module gathers information on which MAC
address is plugged into which port on each switch. This
information is combined with the MAC address discovered in
the discovery image to allow a bridge between the network
layout and the physical layout of the system. The SNMP
module also determines when a node is no longer available on
the network by when it disappears from the switch it is
connected to.

The core of the daemon combines the information from
the HTTP and SNMP modules. Once the daemon has an IP
address, MAC address, username and password for a BMC, it
notifies HSM that a new endpoint exists. In the case of a
disappearing node, it determines which xname matches the

MAC address that has disappeared, the notifies HSM that the
node is no longer present.

D. MEDS
The Mountain Endpoint Discovery Service (MEDS) is an

extremely simple service. Shasta Mountain hardware assigns
itself a hostname, MAC and IP address based on its location,
which it is able to determine by reading from an embedded
cabinet controller. It also registers via SSDP upon power-on.

Figure 2: REDS network communications

Figure 3: Network operations of MEDS.

MEDS receives the SSDP registrations, which include all the
information required by HSM to manage the node. In short,
MEDS is simply a translation layer between the Mountain
Hardware’s SSDP broadcasts and HSM’s API. Customers
should interact with MEDS only to correct error conditions.

MEDS has a second functionality: determining when
hardware has left the network. Hardware may leave the
network gracefully (gives notice it is going to disappear) or
un-gracefully (without notice). SSDP specifies that services
should periodically broadcast while still available and should
broadcast when shutting down. In the graceful case, MEDS
simply translates the shutting down notifications for the
hardware into notifications to HSM. In the un-graceful case,
MEDS notes that it is no longer receiving heartbeat broadcasts
for the hardware and notifies HSM that it has been removed.

The network operations of MEDS are shown in Figure 3.
This diagram shows communication between the Mountain
Node Controller (an out-of-band management interface),
MEDS, and HSM. The node controller sends SSDP
notifications periodically, as well as when the device will be
removed from the network. This diagram does not display
MEDS detecting that a node has left the network un-gracefully
(i.e.: without sending a notification)

V. WORKFLOWS
Next, we will discuss the most common workflows

administrators are expected to encounter while working with
Cray’s Shasta systems. We’ll start with the smallest cases
(changing single nodes) and work up to the more complex
scenarios (system first boot).

A. Adding a node
In the adding a node case, we assume that the system is

being expanded. This section will walk through a single node
being added to the system for the first time. It assumes the
hardware is new, but that the node is already in the system
map managed by IDEALS.

1) Mountain
Mountain hardware self-configures on startup. It needs

merely be plugged in to self-configure and join the system.
2) River

River hardware discovery is more complex than that of
Mountain. It requires nodes to boot and run an image, rather
than taking advantage of Cray-built and -controlled embedded
controllers. It also has fewer available mechanisms to give
feedback to the management software in the event of a failure
during endpoint discovery.

For this reason, River hardware behaves in a very specific
manner on first boot to give clear indicators to administrators
on failure. If a River node successfully discovers after being
powered on, it will power itself off. This gives a clear
indicator of success. If, however, the node fails for any
reason, it will remain powered on with the logs visible on the
console to assist administrators in debugging the cause of the
failure.

Thus, the workflow for adding a node to the system is:
1. Plug the node in to the appropriate connections
2. Power on
3. Verify the node powers itself off within 5 minutes

B. Removing a node
Both Mountain and River hardware should automatically

detect when a node has been physically removed. To
gracefully remove a node, administrators should first verify it
has been drained in the workload manager and has been
powered off. Unlike previous Cray systems, removing a node
will not affect the system’s networks.

C. Replacing a node
Replacing a node is a combination of the “removing a

node” and “adding a node” cases.

D. Initial Discovery
This workflow focuses on the first power-on of the

compute nodes. All of the compute hardware will need to run
discovery when first powered on. Thus, for a new system, the
first step in booting the system is simply to power it on. As
none of the hardware has yet been discovered, it cannot yet be
controlled by Shasta software. Much of the hardware will
automatically power on when power is supplied; the hardware
which does not (primarily River hardware) may be manually
powered on in any order. Powering on River nodes may be
delayed or may be done in parallel with other installation
tasks.

After powering on, hardware will automatically be
discovered. Any node that fails discovery should be noted as
needing investigation to determine the cause of failure, but
will not block the system boot process.

E. Expanding/Contracting a system
Expanding or contracting a system is a rare but important

scenario. It is not uncommon for a system to be permanently
altered in ways not accounted for when the system was
designed. For example, a system could be expanded (new
racks of hardware added) or contracted (racks of hardware
removed).

In any case, the core of the process is an interaction with
IDEALS. IDEALS manages the hardware that is expected to
be present in the system. It therefore must be made aware of
the changes. Cray will provide multiple ways of interacting
with IDEALS, including a user-friendly utility and access to
the RESTful API.

To alter a system, all changes to the system – including
additional, moved, or removed switches and additional,
moved, or removed cables – must be recorded with IDEALS.
To add nodes to a system, they should first be added to
IDEALS. Then the nodes should be installed and powered on,
as in the “adding a node” workflow.

To remove nodes from a system, start by using the
removing a node workflow. The hardware may then be
removed from the system and IDEALS updated.

VI. COMPARISON TO XC
As Shasta is intended to replace Cray’s XC systems, it is

important to compare both systems. In the realm of discovery
and hardware maintenance, the differences are quite
significant – but for the better. Discovery and hardware
maintenance should be significantly more simple in Shasta
than they were in XC systems.

A. Initial Discovery
XC systems did not have a pre-generated map of the

system. Instead, when first booted they would discover the
hardware that was available. This was done with a tool called
xtdiscover [6]. xtdiscover collected all system information in
a single session, essentially regenerating the system database.
Furthermore, collecting this information required all system
components, even existing ones, to be successfully power
cycled – a time consuming process that was often further
lengthened if any blades required repeated attempts. It
performed discovery in a “single shot” and required manual
reconciliation if there were changes between runs. Further,
each run required about two hours. While xtdiscover worked
well for smaller systems where it is possible for all hardware
to be present and functional at once, it is extremely
problematic in Cray’s larger systems.

Larger XC systems are often built up over a period of
weeks as the hardware arrives at the final install location.
Further, during this time, the customer wants to be using (or
at least testing) the portions of the system that are available.
Dedicating two or more hours to running xtdiscover
significantly interferes with customer use and testing of the
system.

In contrast, hardware discovery on Shasta is designed with
ease-of-use as a priority. IDEALS holds a pre-generated
mapping of the entire system. This means there is no single
step where the entirety of the system must be present and
hardware may be added to the system as it is available.

Further, REDS and MEDS (which perform the endpoint
discovery to determine the hardware is added to the system)
are ongoing processes. Both examine hardware as they
receive indicators it is present and add it if it matches hardware
listed in IDEALS. Neither needs manual triggering, so as
soon as new hardware is in the system and powered on, REDS
or MEDS will attempt to discover it. In the case of removal,
both will use secondary information (e.g.: reading slot state in
Mountain) to ensure they are not removing components due
to mere malfunction. This ensures that in the case of hardware
malfunction, components may be reintroduced to the system
with a minimum of effort.

Finally, while REDS and MEDS operate with minimal
intervention, the level of intervention required is configurable.
They may be configured to require human intervention before
making any changes, if the administrator desires.

B. Hardware Replacement
Hardware replacement in XC required rerunning a warm-

swap command to locate new hardware once a failed blade
was replaced. Because Shasta moves to the continuous
discovery model, this manual effort is no longer required.
Replacement hardware need merely be installed (and in the
case of River hardware, powered on) in the system to be
discovered and integrated. At that point, it will assume the
identity of the hardware it was replacing, including the OS
image.

VII. CONCLUSION
Cray’s Shasta system should significantly reduce the effort

required of systems administrators in performing hardware
discovery and maintenance. Shasta prioritizes ease of use and
independence of each component from the others. Further, it
has, as much as possible, ensured hardware tasks (such as
replacing a failed component) do not require software
intervention on the system.

Hardware discovery and maintenance involves four
independent services: IDEALS (which manages a “map” of
the system as it was designed), HSM (which maintains
information about the current and past state of the system),
MEDS (which locates and configures Mountain hardware),
and REDS (which locates and configures River hardware). Of
these services, users should only have reason to interact with
HSM and IDEALS.

This paper summarized the anticipated workflows to be
used with this software, with a focus on how these workflows
are simpler than in XC systems and significantly reduce the
effort required of administrators.

REFERENCES
[1] DMTF, "Redfish Scalable Platforms Management API

Specification," 13 December 2018. [Online]. Available:
https://www.dmtf.org/sites/default/files/standards/documents/
DSP0266_1.6.1.pdf. [Accessed 15 March 2019].

[2] D. Harrington, R. Presuhn and B. Wijnen, "RFC 3411: An
Architecture for Describing Simple Network Management
Protocol (SNMP) Management Frameworks," Internet
Engineering Task Force, 2002.

[3] Intel Corporation, Hewlett-Packard Company, NEC
Corporation, Dell Inc., "Intelligent Platform Management
Interface Specification Second Generation," 2013.

[4] Y. Y. Goland, T. Cai, Y. Gu and S. Albright, "Simple Service
Discovery Protocol/1.0 Operating without an Arbiter," Internet
Engineering Task Force, 1999.

[5] Cray Inc., “XC™ Series System Administration Guide (CLE
7.0.UP00) S-2393,” [Online]. Available:
https://pubs.cray.com/content/S-
2393/CLE%207.0.UP00/xctm-series-system-administration-
guide/physical-id-for-cray-xc-series-systems. [Accessed 18
April 2019].

[6] Cray Inc., "XC™ Series Software Installation and
Configuration Guide (CLE 6.0.UP04) S-2559 Rev B,"
[Online]. Available: https://pubs.cray.com/content/S-
2559/CLE%206.0.UP04/xctm-series-software-installation-
and-configuration-guide-cle-60up04-s-2559-rev-b/bootstrap-
hardware-discovery. [Accessed 3 April 2019].

