
1

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 2

Agenda

• Problem Description
• Background
• Methodology
• Results
• Future Work

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 3

Problem Description

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 4

Problem

• HPC systems have huge computing power,
which can be misused, e.g. for:

– Cryptocurrency miners
– Password crackers
– Other illicit workloads

• Misuse takes many forms:
– Outsider hacking attacks
– Account takeover
– Account misuse by legitimate users

Let’s call all the things a supercomputer shouldn’t be used for “illicit workloads”

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 5

Real World Examples

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 6

Problem

• Diverse paths to misuse (and diverse
defenses), but the core of misuse is always
the workload

• Examining workloads before they run is hard
(halting problem)

• Examining workload after it runs is not useful
• Cannot impact performance of running

system

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 7

Background

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 8

Terminology

• Illicit workload – any workload disallowed by
policy or law

• Classification – the process of using machine
learning to sort input into output buckets
by type

• In-band data – data collected using a
compute node’s operating system

• Out-of-band data – data collected without
work by a compute node’s operating
system

Illicit might include cryptocurrency miner or the use of classified software on non-classified
systems

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 9

Prior work

• Use of in-band metric data relatively well
explored

– Peisert, “Fingerprinting Communication...“
– Whalen et al. "Multiclass Classification...“
– Whalen et al. "Network-theoretic

Classification...“
– DiMasi et al. "Identifying HPC codes...“
– Ates et al. "Taxonomist: Application ...“

• Other out-of-band methods explored
– Combs et al. "Power Signatures...“

Peisert describes a system to classify workloads based on POSIX and MPI calls, gathered using
a shim on NERSC systems

Whalen (the first), applies machine learning and shows it can operate on data similar to that
from Peisert

Whalen (the second) uses an approach that requires understanding the data and it able to apply
network theory in order to perform classification

Ates steps away from the MPI and POSIX monitoring and to more general hardwar emetrics
collected by LDMS. It then shows that machine learning works on this LDMS data

Finally, Combs performs a physical modification of the system, to be able to read the power
draw at a high frequency. They then perform machine learning on this data and are able to
successfully determine the running workload

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 10

Problem (redux)

• All of these require system modifications
• In-band requires adding software, potential

performance impacts and increase in
complexity

• Out-of-band requires physical modifications
to hardware

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 11

Overall Goal

Build a system which uses out-of-band data
(collected without hardware modifications) to

classify HPC workloads in real time

Given what we understand about the problem, what’s the overall goal, beyond just this
presentation and paper?

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 12

Overall Goal

• Out-of-band → No impact on system
performance

• Real-time → Useful for detecting and reacting
to illicit workloads

Why those elements? We’ve identified two problems in existing solutions. Some colelct collect
data in-band and thus impact system performance. The corallry here is that some use out of
band requiring hardware modifications, which is generally off the table for system support
reasons.

The second problem is that many systems only can check after a job has finished running.
Obviously, this isn’t very useful for detecting running illicit jobs – though it is useful for other
purposes.

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 13

Thesis

It is possible to determine what workload is
running on an HPC node from out-of-band

metric data

So here’s the thesis we’ll be testing:

Before jumping into the how...

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 14

What this is

• Initial work towards a larger goal
• An attempt to check the feasibility of an ML

approach without the effort of collecting a
novel data set

What this isn’t

• Complete – there’s much more to do!
• Proof positive that a particular approach

works on a particular type of data – merely
an indicator it might

Let’s go over what this is and what this isn’t.

So, it is an attempt to bite off a part of the big problem and work on it. Once we know that
works, we can proceed to other parts. In that vein, this is an attempt to test the feasibility of an
ML approach, without going through the significant effort of collecting a large and novel data
set.

This isn’t work that’s complete – there’s definitely more to do.

It also isn’t absolute proof that anything that works will work on real out-of-band data.
However, it is a strong indicator that it might

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 15

Taxonomist

• Dataset
• Existing results

I alluded to not collecting an entire novel data set of out-of-band data. So how will we test a
thesis on out of band data?

Well, Ates made available a dataset called taxonomist, made up of in-band data from LDMS.
Colelcted from Volta at Sandia. Generally speaking, out-of-band data overlaps with in-band
data (or can be calculated from it). So we’ll use the taxonomist dataset as our base.

Conveniently, this also gives us a metric to compare against: how do our classification results
compare to the in-band results from Ates? Ates took each job and calculated one input vector to
their ML model from it – basically some cumulative metrics for the job.

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 16

Methodology

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 17

Outline of work

• Determine what data would be available out-
of-band

• Determine intersection with Taxonomist
dataset

• Reduce the data to the intersection
• Perform feature engineering
• Train model
• Evaluate model

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 18

Out-of-Band Data

• Currently two major ways to collect sensor
data from systems:

– IPMI (Intelligent Platform Management
Interface)

– RedFish

• Use RedFish as our basis

OoB data can be collected via the BMC – a tiny computer-within a computer used to control
and measure nodes out of band. Working with the BMC has the advantage that the data often
goes via a dedicated management network and won’t cause congestion or jitter on the high
speed network

RedFish is newer, (now) widely available, standardizes methodology of collecting data

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 19

Information available via RedFish

• Processor metrics
• Memory metrics
• Disk metrics
• Network metrics
• Environmental sensors
• Fan speeds

Redfish gives an awful lot of information about the system. It’s designed to do many things,
among them give a lot of visibility into the inventory and state of a system. It includes
everything from processor metrics to fan speeds, from disk I/O to network I/O and more.

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 20

Common between RedFish & Taxonomist

• Time in kernel mode
• Time in user mode
• Transmitted network frames
• Blocks allocated to cache
• Free memory
• Disk bytes read
• Power consumption

So the LDMS metrics in the taxonomist dataset of course have some overlap. Things like time
in kernel and user mode, network frames transmitted, blocks in l3 cache, free memory, and
some data on power consumption.

We’ll throw out everything in the taxonomist data set that isn’t this stuff, thus reducing it to
things we know we can access out-of-band.

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 21

Feature Engineering

• Largely follow Taxonomist methodology
• Parse data two ways:

– Cumulative time series
– Windowed time series

Armed with data, we move on to feature engineering

We largely follow the taxonomist methodology. That means for each metric collected we
calculate the maximum, minimum, mean, standard deviation, skew, kurtosis,5th percentile,
25th percentile, 50th percentile, 75th percentile, and 95th percentile.

We use this to build two sequences of metrics. First, we use all the data cumulatively and
calculate these metrics for all the data from the job. The last data point of each time series is
equivalent to the data point for the job in Ates, other than being calculated for out-of-band data
instead of in-band. We’ll therefore end up using this last point for comparison.

Second, we do a windowed version, with only the last 40 samples worth of data.

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 22

ML Models

• Trees
– Random Forest
– Extra Trees
– Decision Tree

• SVC
– LinearSVC
– RBF Kernel

• Require 75% confidence, otherwise
“unknown” instead

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 23

Experiments

• Taxonomist comparison
• Cumulative data
• Rolling window

For taxonomist comparison we use the last point of the cumulative data, as the is generated
using identical methodology to how taxonomist extracts metrics for a time series

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 24

Results

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 25

Comparison to Taxonomist
Classifier Data Type Precision Recall F-Score

Random Forest In-band 1.000 1.000 1.000

Out-of-band 1.000 1.000 1.000

Extra Trees In-band 1.000 1.000 1.000

Out-of-band 1.000 1.000 1.000

Decision Tree In-band 0.998 0.998 0.998

Out-of-band 1.000 1.000 1.000

LinearSVC In-band 0.999 0.999 0.999

Out-of-band 0.987 0.904 0.942

SVC (RBF Kernel) In-band 0.994 0.994 0.994

Out-of-band 0.997 0.959 0.997

This shows that out-of-band data can be used for classification as accurately as in-band data, at
least in some circumstances and using some methodology.

We’re going to drop SVC methods moving forward. Between poor performance on out of band
data and exponetial training times, they’re not suitable for the next experiments

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 26

Cumulative Classification
Classifier Precision Recall F-Score Classifications/s

Random Forest 1.000 0.996 0.998 18,984

Extra Trees 1.000 0.999 0.999 20,336

Decision Tree 0.999 0.999 0.999 317,722

Next up is classification performance when run over every point in time, not just the end result.
This allows us to simulate classification on an ongoing basis during the running of a job.
Basically, if we were watching a job the entire time it ran and performing classification every
time we got new metrics, how accurate would be be?

The answer turns out to be quite accurate. These are for cumulative classification – basically
keeping the entire metric history to date and forming metrics based on that. In the real world,
this could be memory and computation expensive, so...

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 27

Rolling Classification
Classifier Precision Recall F-Score Classifications/s

Random Forest 1.000 0.996 0.998 18,796

Extra Trees 1.000 0.999 0.999 18,058

Decision Tree 0.996 0.996 0.996 311,165

The same experiments were re-run with a window. In this case, a 40-sample window. The
results are just about as accurate. In theory, such a window should have a constant memory and
computation footprint, making it much easier to capacity plan in the real world.

The results for both cumulative and rolling classification show high precison and recall,
indicating that if we were continuously running classification using the generated ML models,
it would perform pretty accurately.

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 28

Theoretical Cores for Classification
System Name June 2022 Top 500 Nodes Cores for

Classification once
per Second

Frontier 1 9,408 1

Fugaku 2 158,976 9

LUMI 3 2,560 1

Summit 4 4,356 1

Sierra 5 4,320 1

HAWK 27 5,632 1

Speaking of running classification when we get new metrics and of capacity planning – how
expensive would it be to actually run classification? Do we need to buy clusters to perform this
classification?

As it turns out, probably not. The slowest ML model ran 18,796 classifications per second.
Assuming we collect metrics once per second from each node – a rather fast rate – for a
significant portion of the top supercomputers, we still only need one core.

These numbers do exclude everything that isn’t the classification itself – calculating metrics,
network, etc. They also assume exactly one out-of-band controller per node, which is not
always the case.

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 29

Summary

• Precision/recall of classification on simulated
out-of-band data as good as those in Ates

• High precision/recall for cumulative
classification

• High precision/recall for rolling classification

So, what have we shown?

First, that performing machine learning on simulated out of band data produces classification as
accurate as the in-band data. Or, put otherwise, out-of-band data is as good for figuring out
what’s running as in-band data.

Second, that performing classification over cumulative metrics produces largely good results,
This shows that we can start performing classification pretty early in a job and expect it to
perform well.

And third, that rolling classification works with not much precision/recall loss. This means that
is cumulative is too expensive in memeory or computation, we can fix the size to a window and
get results that are almost as good.

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 30

Future Work

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 31

Future Work

• Re-run with real out-of-band data
• Experiment with other ML methods
• Gather data for and include “malicious”

software
• Gather data from multiple HPC systems –

how well do these methods/models
translate from system to system?

• Build a true real-time detection system for
illicit workloads!

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 32

Funding Acknowledgment

This work has been supported by the project
InHPC-DE, which received funding from the
Ministry of Education and Research (BMBF),

Germany.

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::Steven Presser 05.09.22 33

Questions?
Want to collaborate?

Email me: steven.presser@hlrs.de

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

